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Learning by Analogy:
Formulating and Generalizing Plans

from Past Experience

Jaime G. Carbonell

Abstract

Analogical reasoning is a powerful mechanism for exoloiting past experience in planning and
problem solving. This paper outlines a theory of analogical problem solving based on an extension to
means-ends analysis. An analogical transformation process is developed to extract knowledge from
past successful problem solving situations that bear strong similarity to the current problem. Then,
the investigation focuses on exploiting and extending the analogical reasoning model to generate
useful exemplary solutions to related problems from which more general plans can be induced and
refined. Starting with a general analogical inference engine, problem solving experience is, in
essence, compiled incrementally into effective procedures that solve various classes of problems in
an increasingly reliable and direct manner.

1. Introduction
Analogical reasoning has been a sparsely-investigated phenomenon in Artificial Intelligence

[11,20, 13,311. Nonetheless, analogy promises to be a central inference method in human cognition

as well as a powerful computational mechanism. This paper discusses a computational model of

problem solving by analogy based on an extension of means-ends analysis (MEA). My central

hypothesis (based in part on Schank's theory of memory organization [28, 27]) is the following: When

encountering a new problem situation, a person is reminded of past situations that bear strong

similarity to the present problem (at different levels of abstraction). This type of reminding experience

serves to retrieve behaviors that were appropriate in earlier problem solving episodes, whereupon

past behavior is adapted to meet the demands of the current situation.

Commonalities among previous and current situations, as well as successful applications of

modified plans can serve as the basis for generalization. Similarly, performing an inappropriate

action in a new situation can provide information useful in reorganizing episodic memory. If the

inappropriate action resulted from the application of a recently acquired general plan, an analysis of

the type of error may trigger a discrimination process that constrains the range of applicability for that

plan. In either case, a reactive environment that informs the problem solver of success, failure, or

partial success is an absolute requirement for any generalization or discrimination process to apply.

Whereas humans exhibit a universal ability to learn from experience no matter what the task [221, Al
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2 Learning and Problem Solving by Analogy

systems are seldom designed to model this adaptive quality. Concept acquisition, i.e., inducing

structural or attribute descriptions of non-procedural objects from examples, has received substantial

attention in the Al literature [10, 8, 18, 29, 30], but with few exceptions, the techniques developed

therein have not been transferred to learning in problem-solving scenarios.2 Since the process of

acquiring and refining problem solving and planning skills is indisputably a central component in

human cognition, its investigation from an Al perspective is clearly justified.

This paper presents an analogical inference engine and investigates two fundamental hypotheses:

Hypothesis: Problem solving and learning are inalienable aspects of a anifled cognitive
mechanism.

In other words, one cannot acquire the requisite cognitive skills without solving problems --- and, the

very process of solving problems provides the information necessary to acquire and tune problem

solving skills The second hypothesis postulates a unified learning mechanism.

Hypothesis: The same learning mechanisms that account for concept formation in
declarative domains, operate in acquiring problem-solving skills and formulating
generalized plans.

One method of verifying the second hypothesis is to develop a problem solving mechanism into which

one can integrate the techniques developed in concept formation --- with a resultant system that

learns from problem solving experience. The analogical problem solving method discussed below

provides a framework for automated example generation that enables one to apply learning-from-

examples techniques in order to acquire generalized plans. In essence, the objective is akin to Anzal

and Simon's learning-by-doing method [2]. First, the basic analogical problem-solving method is

discussed, and subsequently an experiential learning component is incorporated as an integral part

of the general analogical inference process.

2. Problem Solving by Analogy
Traditional Al models of problem solving (e.g., GPS [21], STRIPS [9], and NOAH [241) approach

every problem almost without benefit of prior experience in solving other problems in the same or

similar problem spaces.3 Consider, for instance, two related problem

2Exceptios include Aha nd Simon's Learning-by-DoIng Paradigm 121. klitchell', LEX system (l9, STMPS with
MACROPS M. and *ndiecy Lanarw AM (15).

3 A roAblem apace encode the ormalo necessary to solve a problem, Including goals. t Mate, a M actions ta
may be taken in slution attempts. Aleans-Ends Analysis a problem solving method that consists of selecting actions that
reduce known dlterences between the current situation and a desired state. Both of these concepts are elaborated in th
cours of Ow present discussion. However, the ,tsler not familiar with Means Ends Analysis is encouraged to review the
Me!hi in ay standard At text, such as Winston's Aftilcl IIMelligence [32) or Nilsson's Principme of Artificial Irntigence
1231, or read the mch more trough treamrent in (21).
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Problem Solving by Analogy 3

The monkey-and.bananas problem: A (hungry) monkey is placed in a room with
bananas suspended from the ceiling beyond its reach. A wooden box of sufficient size to
serve as a platform from which the monkey can reach up to the bananas is placed
elsewhere in the room.

The experimenter-and-bananas problem: An experimenter wishes to set up the
monkey-and-bananas problem. He has some bananas, a hook in the ceiling just beyond
his reach, and a wooden box elsewhere in the experimental room, and, of course, a
monkey.

A means-ends-analysis problem solver, such as GPS, will solve either problem, given sufficient time

and a reasonable encoding of the permissible actions and their consequences. However, solving one

problem does not provide any information useful in solving the other. One would think that practice

solving a given type of problem should help in solving similar future problems. For instance, an

intelligent monkey observing the experimenter move the box beneath the hook, hang the bananas,

and return the box to its original location, mrv infer which parts of the experimenter's behavior it

sh.ould replicate in order to reach the bananas. Similarly, if the experimenter tires of watching an

unenlightened monkey repeatedly fail in its attempts to solve the problem, he should know how to

take down the bananas by modifying parts of his earlier plan, rather than replanning from ground

zero. In general, transfer of experience among related problems appears to be a theoretically

sj tficant phenomenon, as well as a practical necessity in acquiring task-dependent expertise

necessary to solve more complex real-world problems. Indeed, the premise that humans transfer

problem-solving expertise among closely related situations is inextricably woven into the pedagogical

practices of our educational institutions.

The bulk of human problem solving takes place in problem spaces that are either well known or

vary only slightly from familiar situations. It is rare for a person to encountera problem that bears no

relation to similar problems solved or observed in past experience. New abstract puzzles (such as

Rubik's magic cube) are such exceptional problems, where initially the only tractable solution

procedure is the application of standard weak methods (21] without benefit of (non-existent) past

experience. Therefore, my investigations center on simplified versions of real-world problems, rather

than more abstract, self-contained puzzs.

Now, let us turn to problem solving in familiar problem spaces. What makes a problem space

"familiar"? Clearly, a major aspect consists of memory of past problems and their corresponding

solutions that bear strong similarity to the new problem. Such knowledge, once acquired, can be

exploited in the problem solving process. There is no other way to account for the fact that humans

solve problems In familiar situations much faster, and with more self-assurance than in unfamiliar

abstract situations. A computer model should exhibit the same skill-acquisition process; i.e., it should
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learn to adapt its problem-solving behavior by relying on past experience when available -- failing

back on the application of standard weak methods when more direct recall-and-modification of

existing solutions fails to provide an answer. How might a problem solver be augmented to exhibit

such adaptive behavior? First, let us review the standard MEA process; then we see how the

analogical transformation process augments MEA to exploit prior experience.

2.1. The Plan-Transformation Problem Space

Consider a traditional Means-Ends Analysis (MEA) problem space (21], consisting of:

* A set of possible problem states.

" One state designated as the Initial State

" One or more state(s) designated as goal states -- for simplicity, assume there is only one
goal state.

" A set of operators with known preconditions that transform one state into another state in
the space.

" A difference function that computes differences between two states (typically applied to
compute the difference between the current state and the goal state).

" A method for iadexing operators as a function of the difference(s) they reduce (e.g., the
table of differences in GPS).

" A set of global path constraints that must be satisfied in order for a solution to be viable.4

A path constraint is essentially a predicate on a partial solution sequence, rather than on
a single state or operator. The introduction of path constraints in this manner constitutes
a slight modification of the standard MEA problem space.

Problem solving in this space consists of standard MEA:

1. Compare the current state to the goAl state

2. Choose an operator that reduces the difference

3. Apply the operator if possible -- if not, save the current state and apply MEA to th
subproblem of establishing the unsatisfied precondition(s) of that operator.

4. When a subproblem is solved, restore the saved state and resume work on the original
problm.

4 mFor m. a path celetant may dedlow lperllcwa mibequene off perators. or prevent an operator Oa conummes K
emount of a resource from apoying more thwn N limes, I lhe is only NxK .mount of the reecun available to the problem
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How can one exploit knowledge of solutions to previous problems in this type of problem space?

First, consider the simplest case; knowledge consists only of solutions to previous problems. Each

solution consists of a sequence of operators and intermediate states, including the initial and final

states, together with the path constraints that the solution was designed to satisfy. One rather simple

idea is to create "macro-operators" from sequences and sub-sequences of atomic operators that

have proven useful as solutions to earlier problems. For Instance, STRIPS with MACROPS exploited

this idea [9] using its "triangle table" to store all partial sequences of operators encountered In a

solution to a previous problem. However, the simple creation of macro-operators suffers three serious

shortcomings. First, the cpmbinatorics involved in storing and searching all possible subsequences of

all solutions ever encountered becomes rapidly unmanageable. Searching for applicable macro-

operators can become a more costly process than applying MEA to the original problem. Second,

path constraints are ignored in this process. If the new problem must satisfy a different set of path

constraints, most previous macro-operators may prove invalid. Third, no provision is made for

substituting, deleting, or inserting additional operators into recalled solution sequences. These

operations prove crucial in the analogical transform process described below. Therefore, let us think

not in terms ot creating more and more powerful operators that apply to fewer and fewer situations,

but rather think in terms of grdually transforming an existing solution into one that satisfies the

requirements of the new problem.

Consider a reminding process (a search for solutions to problems similar to the one at hand) that

compares differences among the following:

1. The initial state of the new problem and the initial state of previously-solved problems

2. The final state of the new problem and the final state of previously-solved problems

3 The path constraints under which the new problem must be solved and path constraints
present when previous similar problems were solved.

.4. The proportion of operator preconditions of the retrieved operator sequence satisfied In
the new problem situation. This measure is called the applicability of a candidate
solution.

The difference function used In comparing initial and final states may be the very same function

used for difference reduction In standard MEA. Here, I advocate using the difference function as a

similarity metric to retrieve the solution of a previously-solved problem closely resembling the present

problem. The difference function applied to path constraints is an augmented version of the problem.

state difference function, as it must address operator-sequence differences in addition to state

information. Hence, reminding In our problem-solving context consists of recalling a previously
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solved problem whose solution may transfer to the new problem under consideration. A more

sophisticated method of computing similarities among episodic memory structures is based on a

relative-invariance hierarchy among different components of recalled problem solutions, as

discussed in [5].

Reminding is -only the first phase in analogical problem solving. The second phase consists of

transforming the old solution sequence into one satisfying the criteria for the new problem. How does

this transformation process proceed? I submit that it is equivalent to problem solving in the space of

solutions.
5

O~lPC' Slaw " .

Original Space T.Space

Figure 2-1: A solution path in the original problem spcec

becomes a stae in the analogy transform problem space.

Finding an appropriate analogical transformation is itself a problem solving process, but in a

different problem space. The states of the transform problem space are solutions to problems in the

original problem space. Thus, the initial state in the transform space is the retrieved solution to a

similar problem, and the goal state is a solution satisfying the criteria for the new problem. The

operators in the transform problem space are the atomic components of all solution transformationsm

(e.g., substitute an operator in the solution sequence for another operator that reduces the same

difference, but requires a different set of preconditions or entails different side effects, etc..-- see

5Here I apl my previous definition of a solution to be a sequence of operators and intermediate states together with the set
of ath cosrints tt sequence io known to saiey. Thus. I advocate a MEA to the space of potential solutn
seuences rather than the origa porolem space. However, the reminding process shoul generte an Inital solution
simuence close to the goal s saquence, where c s a detemned by the difference metric poe.

oro in tat
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below). The differences that the problem solver attempts to reduce in the new problem space are

precisely those computed by the similarity metric in the reminding process. In other words, progress

towards a goal is determined by transitions in the solution space towards "solution sequences"

corresponding to problems increasingly similar to the new problem. Intermediate states in the

transform space need not correspond to viable solutions in the original (object) space, in that

intermediate solution sequences may not be executable due to unsatisfied operator preconditions.

The diagram in figure 2-1 gives an intuitive flavor of this problem-solving process. More precisely, the

analogy transform problem space (T-space) is defined as follows:

" States in the transform space are potential solutions to problems in the original problem
space (i.e., sequences of states and operators including the initial and final states, plus
the path constraints under which those solutions were computed.)

* The initial state in the transform space is the solution to a similar problem retrieved by the
reminding process.

* A goal state in the transform space is the specification of a solution that solves the new
problem, satisfying its path constraints.

" An operator in the transform space (labeled .a "T-operator" to avoid confusion) maps an
entire solution sequence into another potential solution sequence. The following is a list
of the most useful T-operators:

o General Insertion. Insert a new operator into the solution sequence.

o General deletion. Delete an operator from the solution sequence.

o Subsequence Splicing. Splice a solution to a new subproblem into the larger
established solution sequence. This T-operator is useful in the following situation: If
an operator in the original problem sequence cannot be applied under the new
problem specification because one of its preconditions is not satisfied, solve the
subproblem of establishing that precondition. This subproblem may be solved
either in T-space or in the original (object) space. If successful, splice the
precondition-fulfilling subsequence into the original solution sequence.

o Subgoal-preserving substitution. Substitute an operator in the original solution
sequence by another operator (or sequence of operators) that reduces the same
difference. This T-operator is particularly useful if either a precondition of an
operator in the original sequence cannot be satisfied, or if the presence of a
particular operator in the solution sequence violates a path constraint.6

o Final-segment concatenation. Treat the solution sequence as a macro-operator

%oe that a abgoal-pmervin substitution Is much more restrictive than a general delete T-operator followed by a general
imert T.operator. Therefore. this T-operator is more apt to yield useful transtormatione a fact reflected in theordering of
operators under each appropriate entry in the difference table.
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in the original problem space and apply MEA to reduce the difference between the
old final state and the new final state. If successful, concatenate the solution to this
subproblem at the end of the original solution sequence.

o Initial-segment concatenation. Apply the process above to find a path in the
original problem space from the new initial state to the old initial state. If successful,
concatenate the solution to this subproblem at the beginning of the original
solution. [Note that in this case we start with the initial state for the new problem
and seek a path to the initial state for the retrieved solution, whereas in the final
segment-concatenation operator the inverse process applies.]

o Sequence meshing. Merge the operator sequences of two complementr
solutions retrieved in the reminding process. The resultant solution sequer-
should differ from a complete solution to the new problem by the intersection of
differences between each retrieved solution and the new problem specification.
the differences between the two retrieved solutions and the new prob'
specification form disjoint sets, sequence meshing yields a complete solution.

o Operator reordering. Reorder the operators in a solution sequence. Often a path
constraint in the new problem specification can be satisfied by simple reordering of
operators (when allowed by their preconditions) in the retrieved solution.

o Parameter substitution. Substitute the objects to which operators were applied
in the retrieved solution by the corresponding objects in the new problem
specification.

o Solution-sequence truncation. Eliminate unnecessary operators. Two
significant special cases of this T-operator are initial-segment truncation and
final-segment truncation. For instance, if the final state of an operator
subsequence of the retrieved solution exhibits a smaller difference to a goal state
of the new problem, use this subsequence as the new basis for mapping into the
desired solution sequence.

o Sequence Inversion. Reverse the operator sequence, inverting each individual

operator, if a problem formulation is such that its goal state matches the initial state
of a solved problem, and its initial state matches the goal state of that same
previously solved problem. Inverting a process is not always possible, and seldom
directly achievable. In the present case, the inverse of each operator must be
found, and its preconditions satisfied, in order to apply global inversion. However,
the general notion is attractive -- consider solving the problem of driving between
two points in an unknown city. Once this problem is solved, the subsequent
problem of returning to the departure site is easily solved by operator sequence
Inversion.

Merging two partid operator sequences is an interesting and.potentially complex problem in Itself. Procedural networks,
do in the NOAH system [241, facilitate computations of operator interactions when meshing two plans. It is not always
the case that two partial solution sequences can be merged effectively (e.g., each subsequence may violate necessry
precondsW for the otier subsequence). Non-llgorithmlc T.operators such as sequence meshing, define their own
" inel - Ie . -e.
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e The difference metric in the transform space (DT) is a combination of the difference
measures between initial states (of the retrieved and desired solution sequences), final
states, path constraints, and degree of applicability of the retrieved solution in the new
problem scenario. Hence, the values of DT are 4-vectors, with the interpretation that all
four component differences must be reduced (independently or jointly) in the transform
space (T-space) problem-solving process.

DT <Do(S, 1 ,S1 2 ), DO(SFI , s F2),

Dp(PC 19,PC 2), DA(SOL ,SOL 2)>
Do is the difference function between states in the original space.

Dp computes differences between path constraints (PC's).

DA measures the applicability of the old solution in the new scenario by
determining the fraction of operators in the initial solution sequence (SOL1 )
whose preconditions are not satisfied under the new problem specification.

S, denotes an initial state.

SF denotes a final (goal) state.

The subscript 1 indexes the retrieved solution.

The subscript 2 indexes the specifications on the desired solution to the new
problem.

DT is reduced when any of its four components is independently reduced. The problem-
solving process in T-space succeeds when DT = <NIL, NIL, NIL, NIL. Interesting .. arrh
problems occur when, in order to reduce one component in the difference vector, one or
more of the other components must be increased. For example, the insertion of new
operators into the solution sequence may have the unfortunate side-effect of violating an
established precondition of an operator in the original sequence. in this case reducing
Do(l) or Do(F) results in increasing DA. Our first-pass solution is to define a (linear)
combination of the four components and choose the operator that maximally reduces this
value, backtracking when necessary. Fortunately, it is often the case that differences in
the 4-vector can be reduced in a componentwise-independent manner. Moreover, a
modified version of the A.MIN method [4] may apply, focusing the backtracking process
when backtracking proves necessary.

" A difference table for indexing the T-operators is needed. Entries in the difference table
take the form *To reduce <DIFFERENCE>, apply a member of
<T-OPERATOR-SET>". The operators in the applicable set are usually ordered as a
function of the heuristic measure of their utility in reducing the given difference. A sample
difference table entry would be:

o If the preconditions to an operator in SOLI are not satisfied (i.e., DA is non-null), try
subgoalproserving substitution on the inapplicable operator, or try
solution-sequence splicing to satisfy the violated preconditions.

" There are no path constraints in the transform space. Since we are mapping from one

_________



10 Learning and Problem Solving by Analogy

solution sequence to another, the intermediate states and T-operators do not necessarily
correspond to actual operations performed on an external world, and therefore are not
subject to its restrictions. This simplification is offset by the more complex difference
metric in T-space.

2.2. Some examples

Consider a simple problem where analogical problem solving may prove quite appropriate:

John is located in Pittsburgh and must travel to New York City. However, when he called
the airlines, he discovered that all the flights were booked. John never took the intercity
train (Amtrak) before, but knows it is a possible means of long-distance travel.

John's plan might be the following: Call Amtrak to make a reservation. Make sure he has sufficient

money for the ticket. Find out where to buy the ticket; buy it; and later go to the station and board the

train. Why is this a reasonable plan? How could John have synthesized his plan? We cannot really

say that John had a "script"8 for taking trains, as he had not previously traveled by train, nor had he

acquired the requisite, detailed information enabling him to do so.

A reasonable way of formulating the plan is by analogy with taking an airplane (or perhaps an

intercity bus). The first step is for John to be reminded of taking an airplane (thus recalling: making

reservations, tickets being costly, often purchasing the tickets in advance, later traveling to the

airport, etc.) Note that it is crucial for John to be reminded of an experience (or a general procedure)

where he was fulfilling a similar goal (intercity travel) and not one where superficial similarities

abound (e.g., taking a subway, where both means of conveyance are called "trains", they travel on

tracks, have many stops, etc.). Subway travel would not suggest the potential necessity of making a

reservation, nor would it suggest the requirement for a reasonable sum of money to purchase the

tickat. Hence, a comparison of goal states, as suggested in our general method, is indeed a crucial

component in the similarity judgements necessary for modeling a reasonable reminding process.

The solution transformation process proceeds by applying the subgoal-preserving substitution

T-operator, substituting TRAIN-TRAVEL for AIR-TRAVEL, as both operators reduce the same

difference. Then, the parameter-substitution T-operator replaces "airport" by "train station",

"airline ticket" by "train ticket", etc. John must rely on his knowledge of how to satisfy the

preconditions of AIR-TRAVEL, and hope that the same methods apply to TRAIN-TRAVEL. If this were

not the case, further problem solving would be necessary.

Nly "script" I mean a slight variation of Schank and Abelson's terminology [26, 7], i.e., a frozen plan: one or more normaive
sequences of planned actions whoe purpose is to satisfy the preconditions of (and carry out) a high-level operator.
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Now, let us reconsider the monkey-and-bananas and experimenter-and-bananas problems, In light

of the analogical problem-solving model.

A monkey watches a behavioral psychologist (i.e., the experimenter) pick up a wooden box
and place it under a hook in the ceiling. Next, the experimenter climbs on the box, places
some bananas on the hook, climbs off the box, and returns it to its original location. Then,
the experimenter releases the (hungry) monkey and leaves the room. How does the
monkey plan to reach the bananas? Can he benefit from having observed the
experimenter?

As we mentioned earlier, a "smart monkey" ought to learn from his observations of the

experimenter. Let us see how analogical problem solving applies here. For simplicity, assume the

monkey does not have prior experience solving similar problems beyond his recent observation of the

experimenter. The monkey's problem is: Initial state - monkey on the floor, bananas on the ceiling,

box in the room; final state a monkey in possession of the bananas; path constraints a physical

abilities of the monkey. However, the solution to the experimenter's problem cannot be applied

directly. (His problem was Initial state a possession of the bananas, box in the room, experimenter

on the floor, final state = Bananas on the ceiling, box not under the bananas; path constraints ,

physical abilities of the experimenter.)

Assuming the path constraints match, the differences between the initial states (and the differences

between the final states) are so large as to preclude any reasonable attempt at direct analogical

transformation. Therefore, the monkey must resort to standard MEA (in the original problem space).

He selects the operator GET-OBJECT (applied to bananas). This operator suffers an unsatisfied

precondition: The monkey cannot reach the bananas. Therefore, the active subgoal becomes: Reach

the ceiling where the bananas are located. How may the monkey proceed at this juncture?

The entire problem can, of course, be solved by recursively applying standard MEA. However,

there is a more direct solution method. If the monkey recalls his observation of the experimenter, he

may realize that the problem of reaching the ceiling has already been solved (by the experimenter, a

a subgoal to placing the bananas there -- although the monkey need not understand the

experimenter's higher-level goals). The monkey can apply the parameter-substitution T-operator

(substituting "monkey" for "experimenter"), and optionally the solution-sequence truncation T.

operator (eliminating the need to return the box to its original location after having used it). This

problem-solving process in T-space results in a plan that the monkey can apply directly to reach the

bananas, and thus achieve his originalgoal of having the bananas.

The significant aspect of the experimenter-monkey-and-bananas example is that standard MEA
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and T-space MEA were combined into a uniform problem-solving process where standard MEA calls

on analogical problem solving to solve a subproblem more directly. The converse process is also

possible, and potentially significant. For instance, in the Amtrak example, if John could not have

satisfied one of the preconditions for taking the train by analogy with the corresponding AIR-TRAVEL

precondition, he could have resorted to standard MEA to solve this subproblem. Hence, Analogical

reasoning adds a powerful dimension to standard problem solving when prior experience can be

brought to bear, but remains largely unobstrusive when no relevant prior knowledge suggests itself.

It would be useful for the problem solver to remember his new problem-solving experiences to use

as a basis for future analogica' reasoning. These could be remembered directly or abstracted into

episodic traces, much like Schank and Abelson's scripts [26,7], and hierarchically organized as a

function of the goals they fulfill.

An interesting observation concerns the recursive closure of analogical MEA.9 If the t-operator

sequence of an analogical problem solving transformation is remembered, the aralogical MEA
process can be applied to these transformations themselves. That is, one can construct an

analogical mapping between two solution sequences by recyling a past analogical mapping among

similar solutions -- or by transforming a past, almost useable mapping by recursive application of

analogical MEA to the analogical mapping itself. A significant point is that no infinite regress requiring

new "hyper-analogical" methods occurs. The same analogical transformation process that applies to

object-level solution sequences applies directly to transforming analogical mappings.

3. Evaluating the Analogical Reasoning Process
In an informal experiment, not meant to withstand statistical significance tests, I gave the following

problem to five undergraduate history-and-art students:
Prove that the product of two even numbers is even.

Somewhat to my surprise and dismay, none of the five was able to solve this simple algebraic

problem, although all five made serious attempts. I had intended to give the subjects similar but more

difficult problems in subsequent'stages of the experiment, measuring whether they improved in speed

or accuracy from their recently-acquired experience solving analogically-related problems.

Nevertheless, the experiment proved useful in demonstrating the reliance of human problems solvers

on analogical mechanisms, as discussed below. Continuing with the experiment, I explaked the

proof process carefully enough to insure that all five subjects understood it:

*Thb s abwl isu to i pim to MWhe, persnal comonicaton.
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First, recall the definition of an eve n number: a number that is divisible by 2.

Second, write cdown an expression that represents an even number: You may write "WN
where N is any integer, to represent a number divisible by 2.

Next, multiply two even numbers, writing: 2N x 2M, where M is also any integer. Multiplying
we get 4NM.

Now, recall the representation of an even number 2 x any integer. Therefore you can
write 4NM = 2 x 2NM, which by closure of integers under multiplication matches the
representation of an even number. Hence, the product of two even numbers Is even.

At this point, all five subjects claimed they understood the proof, and moreover expressed some
feeling of embarrassment for not having derived such an "obvious" proof themselves. Then, I
suggested they try the following problem:

Prove that the product of two odd numbers is odd.

With grim determination to redeem their previous poor performance all five attempted the problem
and three of them succeeded. Briefly.

Odd numbers can be represented as "even + 1V = 2N + 1 for any intege N.

The product is: (2N +1) x(2M +1) n 4NM + 2N + 2M + 1 a 2(2NM +e N + M) +, 1,
which is the representation of an odd number.10

This informal experiment strongly Indicates that the second problem was solved by analogy from the
solution to the first problem. The scratch papers collected from the subjects suggest direct attempts
at transferring and modifying steps of the first solution. The insertion of an extra algebraic step"

illustrates an application of the subsequence splcing T-operator. The global substitution of a
representation for odd numbers In place of a representation for even numbers strongly suggests
paraniete, substitutlion. Moreover, the, mere fact that three of fie subjects were able to solve a
problem more complex than the one where all five failed previouisly, argues very convincingly for an
analog"ca process exploiting the previous solution (or some abstraction thereof). However, It should
be noted that this type of experiment does not In Itself demonstrate dominance of analogical
reasoning in human problem solving, but rather It provides stronrg evidence for the existence of

' 1 nierealingly. one miblWc chos to represent add nmbers so 0N in M.c orc but requires a bitd a ddillonet
agebraic manipulaon. When sad why ahe chase such a represean. her reply WON "Al ISa nice ~e number, mid 7 isa
nice addrnuniber. The differenceh bwen them lThe nst men umbr cVie ~fneaodd hO: andW i ieec c k~a~
3. Sc.I lok ZNenadd 1 What agrapNic lludarn of mew miWhto solvre toe subproblem of uepping from a
vpreInktmdoofaeven numbers lo a rapresendlan at add nurnbersl CO lie twumbiacis who did not pres an aiequat
-o. tiue we ian algebraic mipulalaon saip Vieother erroneously"I chas his reprensenan for odd numbers.

I *.. disklhatlng Vie product of Ve Iwo add numbers hqire pA t haIK a precndiio for factoring Vi Ow ae "2" from
laweeoftie four lsrein:W , + N + S + 1.
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analogical processes in cognitive activities. Demonstrating the conjecture that analogy is the central

inference mechanism for human problem solving would require a much more thorough (and perhaps

more controlled) set of psychological observations.

As a test of the computational feasibility of the analogical problem solving process, a simple version

of MEA was programmed to operate on the transform space, and given a subset of the T-operators

with a corresponding difference table. It solved the product-of-two.odds problem starting from the

solution for two even numbers.12 The initial computer implementation of analogical MEA is not of

particular interest -- it demonstrates that the analogical problem solving process actually works, but

does little else. The truly interesting issues will arise when:

" a much fuller implementation is available allowing comparisons among different problem
solving methods over a representative corpus of problems,

" the learning from experience process discussed in the following section is fully integrated
with the analogical transform process,

" and the analogical problem solver is integrated with a dynamically-changing long term
memory model.

4. Learning Generalized Plans
The analogical transformation process provides a method of exploiting prior experience in a

flexible manner. That is, it requires only that the new problem be structurally similar, rather than

identical, to one or more previously solved problems.13 Hence, simply storing solutions to new

problems constitutes a form of learning --. as these can serve as a basis from which solutions to yet

newer problems may be analogized. However, there are other aspects to learning that present more

interesting challenges. To wit, if a type of problem recurs with r -fficlent frequency, a human planner

is apt to formulate a generalized plan for dealing with future instances of that problem, rather than

reasoning analogically from a particular member of that cluster of similar experiences. A generalized

plan Is, In essence, similar to Schank's notion -of a script [26, 28cu1177], i.e., a pa-ameterlzed

1 2 The program used 2-i to represent an odd number, since the suB1 operator was inadvertently Hated before AIO1 in the

object-spece difference table, and therefore the program had to spice in an additional algebraic step in the solution:
(2N-lX2h-1) a 2(2NM. N - M) 1, which dos not correspond to the 2N-1 representation for odd numbers, and therefore had
to apply aubsequnmoepileng to add two algoebraic operatore that traneormed the expression into 2(2 - N. M + 1)- 1. in
fact, Most of th computknl e was spent rdin those two operators (adding and subtracting the same quantity, and
rfactWorng the expression). This allocaon effort roughly corresponds to the substantial time spent by the subject who
chos 2M+3 s a representation with the resultant product being 2(2NM + 3N + M) + 9, which did not exactly math the
original representation, and ee eventually rfactord InWo 2(2NM + 3N + 3M + 3) .&

13Th MAC0OPS facilty in STRIPS reqed corresponding Initial stat and goal stts to be Identical module
perameitsaton of operators In order to reueportions d pa solution sequences (91.

____
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branching sequence of events with expected goals and default actions.

4.1. Acquiring Generalized Solutions Procedures

How is a generalized plan acquired from past problem solving experience? Consider an inductive

engine, such as those developed to formulate generalized concepts from sequences of positive and

negative exemplars of the target concept, as discussed in [10, 29, 30, 8, 181. Instead of acquiring

disembodied concepts from an external teacher providing training sequences of exemplars labeled

"positive" or "negative", in experiential learning the exemplars consist of past problems and their

respective solutions. These solutions are grouped together as exemplars of a generalized plan by

virtue of being derived from a common ancestor in the analogical transform process. Thus, as in

learning from observation, the concepts to be acquired are not known a priori by an external teacher,

but correspond to clusters of experientially related solutions to a common type of problem. The

"type" is not artificially defined, but depends on the actual experience of the individual problem

solver. More specifically, generalized plans are acquired by the following process

* Whenever the analogical problem solver generates a solution to a new problem, that
solution is tested in the external world. If it works, it becomes a member of the positive
exemplar set, together with the prior solution from which it was analogized and other
successful solutions to problems from the same analogical root.

9 If the analogized solution falls to work when applied in the external world, the cause of

the failure is stored and this solution becomes a member of the corresponding negative
exemplar set.

e The positive and negative exemplar sets are given to an induction engine that generates
a plan encompassing all the positive solutions and none of the negative exemplars. Thus,
the training sequence is provided by past experience solving similar problems, rather
than by an external teacher. And, the concept acquired is a generalized solution
procedure rather than the description of a static object, as is typically the case in the
concept acquisition literature. If the description language for the object-space operators
is extended, additional generalization can occur (e.g., in selecting more general
operators that cover disjunctive subsequences in the generalized solution plan).

* Moreover, negative exemplars are near-misses,14 since the analogical process generated
them by making a small number of changes to known positive instances (i.e.,
transformations to past solutions of the same general problem type, retaining the bulk of
the solution structure Invariant). Hence, near-miss analysis can point out the relevant
discriminant features between positive and negative exemplars of the general planning
structure under construction. In other words, the problem solver serves as an automated

:1
* i 14Wluison 130 dali a a near-mis #0 a negatie swmlr that dlfere from positive exemplana in a smll number of

ognfnt mea No w m w uc- in i d cM s o a corte in th Warning.from-examples
4 -ft
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example generator, producing near-misses as a side effect when failing to generate an
effective plan.

* Finally, in cases where the analogical problem solver fails to generate a solution for the
new problem (as opposed to generating an erroneous solution that becomes a negative
exemplar for the generalized plan formation process), different information can be
acquired. The situations where a solution was recalled and a plan was formed
analogically (independent of whether the plan worked) serve as positive exemplars to
reinforce and perhaps generalize the similarity metric used to search memory. The cases
where a recalled solution could not be analogized into a candidate plan for the new
problem suggest that the old and new problems differed in some crucial aspect not
adequately taken into account in the simi!arity metric, and thus serve as negative
reinforcement to refine and constrain the similarity criterion.

Graphically, the information flow in the learning process is illustrated in figure 4-1. The formula

Analogy: SI/Cl -> P-/Cj

should be interpreted as "The analogical transform process maps plan P, applicable under conditions

C into plan Pi applicable under conditions CI." And, the formula

Environment: Pj/ -- .(or.)

should read as "Plan Pi succeeded (or failed) when executed in the external environment under

conditions CI."

Figure 4-1 summarizes the process of acquiring generalized plans and updating the similarity

criterion from experience. The analogized plans along with their conditions of applicability, form the

input to a learning-from-examples engine. Successful solutions are classified as positive exemplars;

unsuccessful ones are classified as near-miss negative exemplars. Moreover, the cases where the

analogy transform process failed to yield a candidate plan become negative reinforcement instances

to a parameter-tuning process, which is positively reinforced by those cases where a (successful or

unsuccessful) plan was formulated. Updating the similarity criterion should make future memory

searches for solutions to similar problems more responsive to the features that enable the analogical

transform system to map a recalled solution into a potential solution for the new problem. Thus, we

see that analogical problem solving interfaces naturally with a learning-from-examples method in that

it provides an internal example generator requiring no external teacher.

Presently, I am extending the problem solving engine to extract and use information from the

planning process itself (not just problem descriptions and corresponding solutions), such as viable

altematives not chose, causes of failure to be wary of in similar situations, etc. The objective of this

endeavor is to enable the learning-from-examples component to learn, or at least refine, the problem

solving strategies themselves in addition to forming generalized plans. Thus, general patterns of

1 I l] -, ~ m..
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The analogical problem solving process

Analogy- S1/C 1 -. ) P2/C 2  Environment: P2/C 2 -- > +
Analogy: S2/C 2 --> P3/C3  Environment: P3/C3 -.4 +
Analogy: S1/C1 .. > P4 /C 4  Environment: P 4/C4 - -

Analogy: S3/C 3 ..4 P5/CS Environment: P./C4 -. >

Analogy: S3/C3 --4 (no-plan>/C 6
Analogy: S1/C1 --> <no-plan>/C 7

Acquiring generalized plans
from solutions attempts to similar problems

Input to a learning-from-examples process
Positive exemplars: P1/C 1, P2/C 2, P3/C 3
Negative exemplars: P4/C4, P5/C 5 (near misses)

Output from the learning-from-examples process
Generalized plan: PG/Ce

Updating the similarity criterion
used to recall relevant prior experience

Input to a parameter-tuning process
Present similarity metric
Positive reinforcement trials: C1, CC 3,C 4 ,C5
Negative reinforcement trials: C6 , C,

Output from the parameter-tuning process
Updated similarity metric

Figure 4-1: Acquiring generalized plans and updating the similarity metric

inference may be acquired from experience [6].

Parts of the plan generalization process are currently being implemented to test the viability of the

proposed knowledge acquisition method, and preliminary results are encouraging. Although, much

of the theoretical and experimental work in acquiring problem solving skills is still ahead of us, there is

sufficient evidence to support the two original hypotheses: the integration of learning and problem

solving methods into a unified cognitive mechanism, and the utility of the leaming-from-examples

lechnique for acquiring planning skils'as well as more static concepts.

As our discussion has demonstrated, learning can occur in both phases of analogical problem
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solving: 1) the reminding process that organizes and searches past experience, and 2) the analogical

transformation process itself. Additiorial issues in the experiential adaptation of the reminding

process are discussed beow.15

4.2. Episodic Memory Organization

Memory of solutions to previous problems, whether observed or directly experienced, must be

organized by similarities in goal states, initial states, and means available (or path constraints

present). Otherwise, there can be no reasonable reminding process when solving future problems of

a similar nature. Hence, a hierarchical indexing structure on an episodic memory must be

dynamically constructed and extended as the system gradually accumulates new experience.. Given

an effective memory model, the process of continuously expanding and structuring past experience

becomes a relatively simple, but absolutely essential, aspect of learning that proceeds concurrent

with analogical reasoning. Moreover, the memory model should retrieve general plans when these

have been proven reliable to the exclusion of the original episodic memory traces, which then

effectively "fade" from memory. "Fading" means that the memory indexing structure is altered so

they art no longer easily recalled in the reminding process. (This notion is akin to Schank's
"mushing" process [27] and Anderson's masking by declining relative activation [1].)

4.3. Episodic Memory Restructuring

It is conceivable that in the lifetime of an adaptive problem solver, the nature of the problems It Is

called upon to solve may change gradually. The change may manifest itself as decreased reliability of

the difference function comparing new and old problem specifications, causing the reminding

process to retrieve inappropriate solutions, or to miss relevant past experiences. Hence, a means of

tuning the difference metric in a failure-driven manner is a requisite process for long-term adaptive

behavior.

More specifically, the heuristic combining the four values In the DT 4-vector may be turied to yield

appropriate values for certain classes of problems most commonly encountered. For ;lstance,

differences in path constraints are less meaningful to a problem-solver who has ample resources than

to a more spartany-endowed problem solver. If a graduate student later becomes a millionaire, the

fact that he now commands more substantial resources should lessen the impact of resource-based

path constraints in his problem solving. Consequently, the similarity metric will cease to consider past

1 The redr Is reerred to Schank 127. 281, Ubawit [141 and Kolodner 1121 for various discussions on the type of beda

pisodic nmmory mode Implcit in ti pamer. The memoRy organizatbon scheme mus be siructwed according to siirfty
Crtra Insumentl to the tk indexing and reclling pest problem solving experience [S).
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solutions of otherwise similar problems that were solved when operating under more severe resource

constraints. This is not a particularly'desirable state of affairs, as resource-limited solutions are

certainly viable, if not always desirable, to a problem solver commanding more resources. Therefore,

the reminding heuristic should no longer weigh path-constraint differences as heavily. (Note that

reminding is a constrained search process, whereas analogical mapping or instantiating a general

solution pattern are generative processes. Hence, the reminding process need only retrieve

approximate, plausible solutions.) Returning to our example, if that same millionaire later files for

bankruptcy, the relevance of resource-based path constraints assumes significant proportions once

again. A pauper will not be able to solve most problems by emulating a millionaire. Thus, the path-

constraint component of the similarity/difference metric should reestablish its central role in the

reminding heuristic. In this manner, the relevance of each component in the similarity measure is

subject to long-term fluctuation."

iow can the relative weights in the similarity heuristic be tuned? When the reminding process fails

to retrieve a viable initial state to the T-space problem solver, but the problem is later solved in the

original problem space, the solution can be compared to episodic memory. If a solution to a previous

problem is found to be very similar, then the problem descriptions should also have been found

similar by the reminding heuristic. The component contributing the largest difference is then reduced

in importance. The converse process also applies. If a solution retrieved as similar does not lead to a

solution in T-space, the difference(s) that could not be reduced by the T-space problem solver are

made more important in the difference heuristic. These complementary processes regulating the

difference metric are designed to make all changes very gradually to insure against potentially

unstable behavior. This form of experiential parameter tuning is a new application of a technique

dating back to Samuel [25].

4.4. T-Operator Refinement

If episodic memory is e tended to contain T-space problem-solving -traces, in addition to

experienced events and solutions to past problems, then learning can occur in the T-operator

domain. For instance, consider a T-operator present with high frequency in unsuccessful T-space

solution attempts. It is conceivable that the entry (or entries) in the difference table indexing that

T-operator are insufficiently constrained, suggesting the need for a discrimination process such as

"This pro em Is uagous to Beiner's aon coefficienft In mIAC 131. who e vae change gradualy over the
course of a game. Hare change occurs mora gdually ow the tteeime of the problem s ,ver. W I m proposing an afapie
raher than a pre-prainmed conemtual-weighlng process. Nole that whreas individual path constraints differ from problem
to problem. I arn dicusing graul changes In the relative ignifcance of path consraints i a W Otr cdrit In to
slWty met on erag oer mny indivi proble sovng podea.
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the following:

1. Compare T-space solution attempts where the T-operator in question was present only In
failure paths, with solution attempts where it was present in successful solution paths.

2. If there are multiple entries in the difference table for that T-operator, and some entries
correspond only to failure instances of the operator, delete these entries, as the operator
is being applied to reduce a difference it proved incapable of reducing.

3. If a single entry corresponds to many more failures than successes, the description of the
difference being reduced may be too general and ought to be factored into a disjunctive
set of more specific differences. Later experience can help isolate which of these sub-
differences the T-operator is actually capable of reducing. Then, the more specific
differences (those that the T-operator in question proved capable of reducing) replace
the previous more general entry in the difference table. Other differences in the factored
disjunctive set that (as experience shows) cannot be reduced by the T-operator are
discarded. It should be noted that the operation of factoring an arbitrary concept into a
disjunctive set of sub-concepts is, in general, not a tractable process. However, given a
hierarchical memory model and a non-monotonic inference capability,17 approximately
correct factorings can be achieved.

4.5. The Acquisition of New T-Operators

If the reminding process retrieved one or more solutions, but the analogy transform process failed

to map these into a solution satisfying the specifications of the new problem, and the original-

problem-space problem solver found a solution, then we have a clear indicator that the T.space

problem solver is missing some essential T-operators. One approach to remedy this situation is the

following proces:

1. Compare the solution computed by the problem solver in the untransformed space with
the various attempted transformations in T-space.

2. Find the intermediate state in the failed T.space solution attempt that minimizes the
difference metric (DT) to the solution computed by standard MEA.

Hypothesize a T-operator instance to be the transformation from the closest state
(reached in the T-space solution attempts) to the actual solution. Save this T-operator
Instance.

4. If later problem-solving impasses cause failure-driven creation of more T-operator
instances, then the application of a learning-from-observations technique, such as the
conceptual clustering method [17] may prove fruitful. If the exemplars are sufficiently
similar, or form clusters of closely similar exemplars, new T-operators can be
hypothesized according to the characteristic description of each conceptual cluster.

1 7Non-m6 r inrence Ww pibs h a e mne tchnique beed on tMetative deduction md aimptlnM ta ny

pove qeld m addlocW knowledge is acqurd (16.
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"Sufficiently similar" in this context means that the common structure shared by the
cluster of T-operator instances is not present in other active T-operators. Hence, the new
operator will perform transformations different from those of any previously existing T-
operator -- i.e., the new operator may prove generatively useful.

5. The newly-created T-operator may then be added to the set of active T-operators (subject
to the refinement process above if the new operator proves unreliable).

6. The entry in the difference table indexing the new T-operator is a bounded generalization
of the differences that each T-operator instance reduced at the time it was created. If
these differences do not share a common component not present in other entries, more
than one (disjunctive) entry must be made in the difference table.

Thus, new T-operators can be acquired if the problem solver is given a set of problems for which

the same (previously unknown), general T-space transformation was required. Moreover, the

operator acquisition and discrimination processes are equally applicable to refining and extending

sets of operators in the original untransformed problem space (if the problem solver can tap an

external source of knowledge upon failure, or relax processing constraints upon resource-limited

failure). Acquiring T-operators, however, requires learning from observation, rather than the better

understood and generally simpler process of learning-from-examples used to acquire generalized

plans.

The learning mechanisms discussed in this section can prove effective if and only if the reasoning

system is capable of remembering, indexing and retrieving past experience, including aspects of its

Internal processing in previous problem-solving attempts (e.g., hypothesized T-operator Instances).

Therefore, the necessity for both dynamic memory organization processes and a problem solving

mechanism capable of exploiting episodic memory is dearly manifest

5. Concluding Remark
The primary objective of this paper has been to lay a uniform framework for analogical problem

. solving capable of integrating skill refinement and plan acquisition processes. Most work In machine

learning has not addressed the issue of integrating learning and problem solving Into a unified

process. (However, Mitchell [19] and Lenat [15] are partial counter-examples.) Past and present

investigations of analogical reasoning have focused on disjoint aspects of the problem. For instance

Winston [31], investigated analogy as a powerful mechanism for classifying and structuring episodic

descriptionW. Kling [11] studied analogy as a means of reducing the set of axioms and formulae that a

theorem prover must consider when deriving new proofs to theorems similar to those encountered

previously. In his own words, his system "...derives the analogical relationship between two [given]

p i -, -_ ,, - -; 2-i , E1w11j1



22 Learning and Problem Solving by Analogy

problems and output$ the kind of information that can be usefully employed by a problem-solving

system to expedite its search." However, analogy takes no direct part in the problem-solving process

itself. Hence, the extension of means-ends analysis to an analogy transform space is, in itself, a new,

potentially-significant problem-solving method, in addition to supporting various learning

mechanisms in an integrated manner.
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Analogical reasoning is a powerful mechanism for exploiting past experience in planning and
problem solving. This paper outlines a theory of analogical problem solving based on an extension to
means-ends analysis. An analogical transformation process is developed to extract knowledge from
past successful problem solving situations that bear strong similarity to the current problem. Then,
the investigation focuses on exploiting and extending the analogical reasoning model to generate
useful exemplary solutions to related problems from which more general plans can be induced an
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refined. Starting with a general analogical inference engine, problem solving experience is, in
essence. compiled incrementally into effective procedures that solve various classes of problems in
an increasingly reliable and direct manner\N
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